
Institut für Informatik

Masterarbeit

LiveCG: a Framework for Interactive Visualization of
Algorithms from Computational Geometry

Sebastian Kürten
Matrikelnummer: 4205308

sebastian.kuerten@fu-berlin.de

Erstgutachter:
Prof. Wolfgang Mulzer

Zweitgutachterin:
Prof. Agnès Voisard

Berlin, den 17. März 2014

Abstract

The field of Computational Geometry is devoted to geometric problems and to
finding efficient algorithms for solving them. Given that the problems of the
field are typically concerned with geometric objects and manipulations of such,
it appears natural to visualize the geometric context of a problem when study-
ing it. This thesis describes the design and implementation of a framework
for the visualization of algorithms and data structures from computational ge-
ometry. This framework can assist scientists and students in creating useful
visualizations with reduced effort by profiting from the ready to use compo-
nents of the system. It also serves as a tool for people interested in learning
about specific algorithms as a good visualization can be a helpful instrument
in understanding complex problems. For some basic algorithms of the field,
animated visualizations have been created that will be presented as well.

iii

Eidesstattliche Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Ich erkläre weiterhin, dass die vorliegende Arbeit noch nicht im Rahmen eines
anderen Prüfungsverfahrens eingereicht wurde.

Berlin, den 17. März 2014

Contents

1 Introduction 1
1.1 Structure of the Document . 2
1.2 Objectives and Contribution . 2

2 Background 4
2.1 Computational Geometry . 4

2.1.1 The Sweep Line Technique 4
2.1.2 The Doubly-Connected Edge List (DCEL) 5
2.1.3 General Position . 5

2.2 Algorithm Visualization . 5
2.2.1 History . 7
2.2.2 User Roles in Visualization Systems 7
2.2.3 Overview of Available Visualization Systems 8
2.2.4 Other Visualization Material 9

3 LiveCG 10
3.1 Relevant Software and Technology 10
3.2 Project Details . 12
3.3 Data Model . 13
3.4 File Format . 14

4 User Perspective 17
4.1 Main Graphical User Interface (GUI) 17
4.2 Example: a Visualization Dialog 20
4.3 Command-Line Interface (CLI) 22
4.4 Advanced Configuration . 23

5 Developer Perspective 25
5.1 Implementing Visualizations . 25
5.2 Rendering Subsystem . 28

5.2.1 Drawing Layer . 29
5.2.2 Drawing Back Ends . 31

5.3 Text Output Module . 33

iv

CONTENTS v

6 Implemented Visualizations 35
6.1 Doubly-Connected Edge List (DCEL) 35
6.2 Fortune’s Sweep Line Algorithm for Computing Voronoi Diagrams 36
6.3 Partitioning Polygons into Monotone Pieces 38
6.4 Triangulating Monotone Polygons 39
6.5 Shortest Paths in Polygons . 41
6.6 Chan’s Algorithm for Computing the Convex Hull 43
6.7 Fréchet Distance . 44

6.7.1 Free Space Diagram . 45
6.7.2 Distance Terrain . 46

6.8 Buffer Regions . 47

7 Conclusions and Future Work 49
7.1 Summary . 49
7.2 Future Work . 49

References 51

Acronyms 55

A Source Code 57
A.1 Painter Interface . 57

Introduction

1
Using graphical visualizations for modeling abstract topics is a widespread
method applied across virtually every discipline. Computer science is no ex-
ception to this and visualizations are widely used for explaining concepts, data
structures and algorithms to make them easier to grasp. We regularly employ
drawings to illustrate the properties of data structures such as lists, trees or
graphs and the operations that are defined upon them. For many topics such
as automata or graph theory, the graphical abstraction is ubiquitous. Other
forms of visual abstraction such as diagrams are also very popular. Entity-
relationship diagrams are used to describe data models and the Unified Mod-
eling Language can be used to describe various aspects of complex software or
hardware systems.

Computational geometry deals with problems that usually come from a
geometric domain or are representable in it. Utilizing graphical representations
is thus an even more natural approach than with topics where the graphical
depiction is purely abstract. For many topics of the field it is certainly a good
idea to start explaining them by drawing a suitable picture, because it may
serve best for illustrating a geometric problem or an algorithm’s general ideas.
Moreover, explaining individual steps of an algorithm often requires a sketch of
the geometric objects involved. Analysing degenerate cases may also be easier
when actually seeing what is happening in a special situation.

However, creating proper drawings by hand may be exceptionally hard for
many algorithms and data structures. In contrast, the pictures created by a
computer system can usually be arbitrarily accurate even for complex situa-
tions. Therefore, we are interested in creating such drawings using software.
Such software should allow us to inspect the behaviour of an algorithm in
general or for specific situations of interest. A suitable program could be a
valuable tool for teaching, self-study and for the creation of publications.

Even though they could be quite helpful, there are only few software-gen-
erated visualizations available in the field of computational geometry. This
motivates the development of more visualizations, especially for algorithms
where none exist so far. Because there are many recurring tasks to be solved
across different visualization implementations, a framework should be a useful
tool in making the process of creating visualizations simpler and the results

1

2 CHAPTER 1. INTRODUCTION

more widely usable. This thesis describes the design and implementation of
such a framework called LiveCG, which is an acronym for Live Interactive Vi-
sualization Environment for Computational Geometry. Furthermore, it also
presents the visualizations that have been implemented using this framework.

1.1 Structure of the Document

In the next section, I will first define objectives for this thesis and anticipate
which of them have been achieved. The next chapter will then provide back-
ground information on relevant topics and technology and clarify terminology
used throughout the thesis. First of all, computational geometry and some
of its core concepts will be introduced briefly (Section 2.1). Next, algorithm
visualization will be defined and I will give an outline of its history and the
landscape of visualization software systems (Section 2.2). The following chap-
ters present LiveCG: Chapter 3 introduces the framework in general; Chapter 4
presents it from a user’s perspective; and Chapter 5 focuses on the visualiza-
tion developer’s point of view. Chapter 6 will then illustrate the visualizations
that have been implemented. The relevant algorithms are introduced briefly,
but the focus is on the way their respective visualizations display insightful
information about them. The last chapter aggregates the results and gives an
outlook on what could be done in the future.

1.2 Objectives and Contribution

No modern visualization framework specialized on computational geometry
could be found (see Section 2.2.3). Although some of the general-purpose
systems implement a few algorithms of the field as well, they do not seem to
fulfill the typical requirements imposed on such a system. Hence, no system
could be identified that provides a good starting point for further development
of geometric visualizations.

In order to improve this situation, our main objective is to create a new
framework for the visualization of data structures and algorithms of the field.
Although technologically obsolete, the Workbench for Computational Geome-
try [Eps+94] looks like an archetype of the kind of system we have in mind. To-
gether with pioneering general purpose systems, like BALSA [BS84], it serves
as an inspiration for our system.

To summarize our contributions, a flexible and modern system has been cre-
ated that could serve as a basis for the visualization of various algorithms from
computational geometry. For the end user, the system leverages interactivity,
features intuitive graphical user interfaces and offers multiple export options
for visualization graphics. Although graphical representations are central to
the framework, the system is designed to support textual explanation to in-

CHAPTER 1. INTRODUCTION 3

crease the educational value. From the visualization developer’s perspective it
offers many reusable components that make the development of visualizations
more efficient than by starting from scratch.

The framework focuses on pure algorithm visualization and there are no
attempts to integrate features of program visualization. Likewise, it does not
offer any form of scripting environment that would allow end users to easily
experiment with the implementation of new algorithms. Although it tries to
simplify the developer’s job as far as possible, there are still a number of
programming tasks that have to be completed for creating new visualizations.

For the sake of simplicity, we decided to focus on problems with 2-dimen-
sional geometric input. Furthermore, the scope of geometric objects is limited
to those consisting of a finite number of straight line segments. To enable the
user to generate the input for the visualizations in terms of such data, we have
created a software component for the manipulation of basic geometric objects.

The system implements a number of visualizations. The major algorithms
are Fortune’s Sweep for computing Voronoi diagrams, an algorithm for com-
puting shortest paths in polygons and Chan’s algorithm for computing the
convex hull. Concerning polygons, there are also visualizations for partition-
ing them into monotone pieces and for triangulating them. As a building block
for others, a reusable visualization of the DCEL is available. Also, there are in-
teractive diagrams that are related to the computation of the Fréchet distance
and to the computation of buffer regions.

Background

2
2.1 Computational Geometry

Computational geometry is a relatively young discipline that emerged in the
1970s [Ber+00]. Nowadays, a large community of researchers holds conferences
and writes dedicated journals on the subject. According to de Berg et al.
[Ber+00, p.2] it can be defined as “the systematic study of algorithms and
data structures for geometric objects, with a focus on exact algorithms that
are asymptotically fast”.

Typical topics considered in introductory books [PS85; Ber+00] include
geometric searching, convex hulls, intersections of geometric objects, Voronoi
diagrams, triangulations, the geometry of rectangles, linear programming and
robot motion planning. Results of the field have broad applications in vari-
ous areas such as computer graphics, robotics, geographic information systems
(GIS), and computer aided design (CAD), engineering (CAE) and manufac-
turing (CAM).

Efficient algorithms for geometric problems often employ general algorith-
mic techniques also used in other fields of computer science such as divide-
and-conquer, balancing, recursion or dynamic programming. Well-known data
structures such as priority queues or those for representing ordered or un-
ordered sets are also frequently used. However, there are also important re-
curring techniques and data structures that are rather unique to the domain
of geometry.

2.1.1 The Sweep Line Technique

The sweep paradigm [PS85, p.11] is an important technique that serves as a
design pattern for geometric algorithms. A line on the plane, the sweep line,
is moved along the plane, and the steps of the algorithm are carried out at
important positions of this line called event points. Usually, two data structures
are involved: an event point schedule (EPS) and the sweep line status (SLS).
The EPS organizes the event points. Depending on the algorithm, they may
be computed in a pre-processing step or change dynamically during execution.
The SLS maintains information about the intersection of the sweep line with
the geometric objects involved and it is modified at the event points. Using

4

CHAPTER 2. BACKGROUND 5

this structure, the algorithm computes the actual output, either on the fly or
in a post-processing step.

2.1.2 The Doubly-Connected Edge List (DCEL)

The Doubly-Connected Edge List (DCEL) [MP78] is an essential data structure
that is used in many algorithms. It represents subdivisions of the plane as a
graph whose nodes correspond to its vertices, edges and faces. The nodes are
interconnected so that an efficient traversal of the subdivision is possible. For
example, we can traverse the edges around a face or iterate over all edges that
coincide in a given vertex. As the name suggests, edges play a central role
within the data structure and are organized similar to the elements of doubly-
linked linear lists.

2.1.3 General Position

When talking about algorithms from Computational Geometry, it is often use-
ful to make assumptions about input data that makes them easier to formulate
and explain. Such input data is said to be in general position. What exactly
that means depends on the algorithm. For example, it may mean that no
three points lie on a line or that no four points lie on a circle. Another typical
assumption is that no two points have the same y-coordinate.

An algorithm is then designed under the assumption that the input is in
general position. Usually, it is possible to modify it afterwards to work with
previously ignored special cases without changing the asymptotic worst case
running time and space requirements. Either these cases have to be treated
in the implementation specifically, or generic frameworks like the perturbation
technique [BMS94] can be used to deal with degeneracies transparently. Al-
though it appears to be debatable whether the latter concept is applicable in
practice [BMS94], authors frequently leave out the details about degenerate
cases to reduce complexity and to avoid distraction from an algorithm’s major
ideas.

2.2 Algorithm Visualization

An algorithm visualization communicates information about what an algorithm
does and how it works. Price et al. [PBS98] point out that “visualization is a
word that is often misunderstood, even by experienced English speakers”. They
say many people believed it had only to do with drawing pictures although it
had rather to do with forming a mental image of something not actually present
to the sight. They further argue that this could be achieved by different forms
of sensory input, not only through input to the visual field.

6 CHAPTER 2. BACKGROUND

Hence, algorithm visualization is about forming a mental image of an al-
gorithm, and different techniques can be used to accomplish this goal. From
this perspective, describing the steps of an algorithm with natural language or
via pseudocode is a form of visualization as well. Other methods may be more
surprising, such as algorithm auralization where sound is used to illustrate an
algorithm’s behaviour. In spite of this broad definition, pictures are an im-
portant and widely used form of visualization as well. They can capture a lot
of information in a comprehensible way — especially in the field of compu-
tational geometry where many objects and operations have a direct graphical
representation.

An algorithm animation is a dynamic visualization that lets us observe the
behaviour of an algorithm. Although applicable to sound as well, this usually
refers to graphical illustrations where animation effectively results in a motion
picture. In the simplest case the animation is a sequence of snapshots from
the algorithm in subsequent states of execution. However, some animations go
one step further and animate the transitions between individual steps of the
algorithm.

A visualization or animation becomes interactive when the user, i.e. the
person who is watching it, is able to interact with certain aspects of the vi-
sualization. This may mean that one can select the input to the visualized
algorithm, navigate through the animation, or configure parameters of the
algorithm or its presentation.

In this thesis I use the term visualization as an umbrella term that covers
both animation and interaction as well as visual and non-visual techniques.
However, algorithm visualization should be distinguished from the more gen-
eral concept of software visualization which includes the former but which
also includes program visualization. Program visualization is concerned with
the lower level implementation of algorithms, as opposed to the higher level
abstraction in which algorithms are usually described. Visualizing programs
imposes requirements on a visualization framework that are not within the
scope of this thesis. For example, it requires a display of a program’s source
code and a presentation of the runtime environment at the current state of
execution similar to that of a typical interactive debugger.

Although there is not much scientific evidence whether algorithm anima-
tions really help in teaching and learning, they have been used for that purpose
for many years now [SL98]. It appears to be popular belief that algorithm ani-
mation is a useful tool in learning about algorithms. For example, Byrne et al.
[BCS96, p.2] write about the pros of algorithm animation:

The use of pictures and visualizations as educational aids is ac-
cepted practice; textbooks are filled with pictures, and instructors
often diagram concepts on the blackboard to assist an explanation.

CHAPTER 2. BACKGROUND 7

Animation goes one step further. While static visualizations can
provide people with the essence of how something looks, is laid
out, or is constituted, animation appears better able to explain a
dynamic, evolving process.

Furthermore, it is often argued that interaction makes visualizations even more
effective [Jef98].

2.2.1 History

With the above understanding of algorithm visualization, it has a very long his-
tory. Ever since people have studied algorithms, they have used natural and
formal language and visual abstraction for describing them. Algorithm anima-
tion, on the other hand, became feasible only with advancements in technology
and their availability to researchers. Interactive visualization became possible
through the rise of workstations and personal computers. The first short films
illustrating algorithm behaviour were published in conferences in the 1970’s
[BP98]. Nevertheless, many authors state that the field has its roots in movies
and systems released in the early 1980’s [SBL93; TD95; BP98]. The movie
Sorting Out Sorting by Baecker and Sherman [BS81] is often portrayed as
an important milestone and one of the first movies to illustrate algorithms dy-
namically. It compares nine sorting algorithms and presents original techniques
that influenced the whole field.

Many publications can be found on the topic from the 80’s and 90’s. They
are often concerned with the presentation of new systems for algorithm visual-
ization. One of the first and most prominent of those is the Brown Algorithm
Simulator and Animator (BALSA) [BS84] developed at Brown University in
the 80’s. The software has been designed for teaching purposes in an electronic
classroom. Apparently, numerous algorithms have been implemented for this
system. Depending on the algorithm, the user was able to inspect different as-
pects of it via specific views producing graphics of the algorithm’s state. The
user was able to step through the execution and inspect in parallel a number
of views on underlying data structures or other useful displays.

2.2.2 User Roles in Visualization Systems

Different types of users are involved with an algorithm visualization framework.
Price et al. [PBS93] identify the following roles: system developer, programmer,
visualizer and user. The system developer creates the visualization system that
all other parties use. The user, or end user to be more specific, is the person
who views a visualization and interacts with it. This visualization has been
implemented by the visualizer based on an algorithm implementation that a
programmer provides. Visualizer and programmer have to cooperate to make
a sophisticated visualization possible. In fact, the tasks of both roles are so

8 CHAPTER 2. BACKGROUND

tightly coupled, that, for our considerations, they are one. Further along in
the text, visualization developer, developer for short, shall stand for the merger
of the visualizer and programmer.

2.2.3 Overview of Available Visualization Systems

Various different visualization systems developed by others in the past have
been considered as a starting point for our work. Shaffer et al. [Sha+10] provide
an overview of existing systems. Most of the older systems, such as BALSA,
Zeus, XTANGO or JCAT are no longer available due to technological obso-
lescence and their often extensive content is effectively lost. Yet, the systems
have been presented in publications so that information about their features
is conveyed.

Systems that are available today include Animal, JAWAA, JHAVÉ, AlViE,
Matrix Pro and Jeliot 2000. Most of them are implemented in Java and can
be run as standalone applications. Individual visualizations are often addi-
tionally made available through the web in the form of applets. For instance,
TRAKLA2 is an e-learning platform that integrates the visualizations avail-
able through Matrix Pro and offers automatic assessment of student exer-
cises to instructors. To increase accessibility, some projects try to switch to
more browser-friendly programming environments by moving to HTML- and
Javascript-based solutions. The OpenDSA project aims to create an interac-
tive web-based textbook that includes interactive animations instead of static
figures. The authors use a Javascript visualization library [KS13] to integrate
well with modern browser technology. Similarly, the Data Structures Visual-
ization project1 provides a rich collection of visualizations that are available
through the browser.

However, the focus of these systems is often primarily on fundamental com-
puter science data structures and algorithms and the systems do not provide
special means that are essential for working with geometric data. Historically,
some systems have focused on computational geometry: the XYZ GeoBench
[Sch90], GeoLab [RJ93], theWorkbench for Computational Geometry [Eps+94],
GASP [TD95], GeomView [Ame+95] and GeoWin [BN02]. Unfortunately,
none of them qualifies as a valid starting point for further development. They
are either not available today due to technological obsolescence or are only
available under a commercial licensing model (GeoWin). An exception is Ge-
omView, but this software is merely a sophisticated viewer for 3-dimensional
geometric data and not a fully-featured algorithm visualization environment.

1http://www.cs.usfca.edu/~galles/visualization/

http://www.cs.usfca.edu/~galles/visualization/

CHAPTER 2. BACKGROUND 9

2.2.4 Other Visualization Material

Apart from visualization systems, there are numerous videos and interactive
animations available through different sources. Often, individuals created those
visualizations and published them on their homepage. Fortunately, the Algo-
Viz project [Sha+11] strives to build and maintain a database of all available
material. They categorized the visualizations they have collected and usually
for each visualization a link is provided to where it can be executed. Their
collection covers not only independent visualization projects but also the visu-
alizations available through the aforementioned systems.

Shaffer et al. [Sha+10] have analyzed their collection and identified that
the majority of visualizations are created for recurring topics, such as sorting
algorithms, linear lists, trees and graphs, with few visualizations for specialized
areas such as computational geometry.

Through additional research, more visualizations not yet listed by AlgoViz
have been found. Most notably the GeometryLab2, which provides an exten-
sive collection of computational geometry visualizations. Another important
source, primarily for videos presenting algorithm animations, is the Annual
Video Review of Computational Geometry3 which is held yearly within the
ACM Symposium on Computational Geometry since 1992. According to Haus-
ner and Dobkin [HD99] it is “the main vehicle for dissemination of techniques
in the field”. The conference website hosts the videos that have been submitted
since 2003.

Unfortunately, only few authors publicly release their visualization’s source
code and even fewer do so under an open source license that would allow it to
be reused [Coo+14].

2http://www.geometrylab.de/
3http://computational-geometry.org

http://www.geometrylab.de/
http://computational-geometry.org

LiveCG

3
LiveCG is a framework for the creation of interactive visualizations of data
structures and algorithms from computational geometry. To its users, the
framework acts as a collection of visualizations and as an experimenting envi-
ronment. It provides an extensive user interface that makes it easy to access
the available visualizations for varying inputs (see Chapter 4). For developers,
the framework provides software components that ease the process of creating
visualizations. The challenge is to design them in such a way that they are
reusable across different algorithms and visualizations to maximize the benefit
for the developer (see Chapter 5).

While the following chapters focus on these different perspectives, this
chapter addresses basic topics concerning the framework. We first describe
relevant software and technologies (see Section 3.1) and then provide some
general information about the project (see Section 3.2).

The framework’s problem domain are algorithms operating on geometric
data, and their implementation typically requires some abstract data types to
represent the geometric objects they manipulate. Different algorithms may
need different data structures, but the framework should provide the most
common ones such that developers may save the effort of implementing those
data structures themselves (see Section 3.3).

It should be possible to store collections of geometric objects for later us-
age. This allows for creating educationally helpful instances of input data that
may be shared among instructors and students, made available on the web or
included as examples into visualization applications. For this purpose, a file
format for geometric data has been designed (see Section 3.4).

3.1 Relevant Software and Technology

Java

Java is an object-oriented programming language that compiles to Java byte-
code instead of native machine code. This bytecode can be run on any operat-
ing system for which a Java Virtual Machine (JVM) is available, making Java
programs executable on all major desktop operating systems without modifi-
cation.

10

CHAPTER 3. LIVECG 11

Swing

Swing is a library and widget toolkit for graphical user interfaces for Java
that ships with its standard distribution. Similar to the language itself, Swing
is platform independent and allows the programmer to create user interfaces
regardless of the underlying operating system.

AWT

The Abstract Window Toolkit (AWT) is the original toolkit for graphical user
interfaces for Java. Although it has been superseded by Swing, many parts of
the library are still relevant. Most notably, the rendering engine (class java-
.awt.Graphics2D) and the geometry library (package java.awt.geom) have
not been replaced with the introduction of Swing.

XML

The Extensible Markup Language (XML) is a language for describing struc-
tured data in plain text, which makes it both machine-readable and human-
readable. It is superior to simpler plain text formats because it is easily possible
to design robust file formats for storing complex information whose structure
is still almost self-explanatory.

CGAL

The Computational Geometry Algorithms Library (CGAL) is an open source
geometry library with a strong academic background written in C++. It cov-
ers a wide range of topics1 and is probably the most extensive collection of
implemented geometric algorithms. The design of many packages is very flex-
ible to support different number types, precision models and distance metrics.
When applicable, the algorithms are usually implemented to work with two,
three or even arbitrary dimensions.

Due to its extensive coverage of topics, CGAL would naturally be the
first choice among the available geometry libraries. Unfortunately, it is not
directly usable from Java. Although language bindings are being developed2,
their usage would imply severe restrictions concerning the portability of the
framework.

JTS

The JTS Topology Suite (JTS) is a geometry library for Java. When compared
to CGAL, it covers only a small range of topics and is less flexible. On the
other hand, it has a less complicated API.

The library has its roots in the Geographic Information System (GIS) con-
text and the implemented features are designed to fit the requirements of that
field. Its data model supports 2-dimensional geometric objects consisting of

1http://doc.cgal.org/latest/Manual/packages.html
2https://code.google.com/p/cgal-bindings/

http://doc.cgal.org/latest/Manual/packages.html
https://code.google.com/p/cgal-bindings/

12 CHAPTER 3. LIVECG

non-intersecting straight line segments. Supported features include Boolean
set operations and spatial predicates for polygons; convex hulls; Voronoi di-
agrams and Delaunay triangulations; length and area measurements; curve
simplification; and spatial indexing methods. It also offers robust basic tools
for working with geometric data, such as orientation and collinearity tests; in-
tersection computations with extended precision; and common data structures
such as a quad-edge data structure that serves a similar purpose as the DCEL.

3.2 Project Details

LiveCG is free software and its source code is released under the terms of the
General Public License3 (GPL) in order to encourage contributions from other
developers. As such, it is available as a project4 on the Github5 platform.

For every software, the choice of the programming language is an important
one. LiveCG has been developed in Java, which is still one of the most popular
programming languages today6. Its prominence, especially in the academic
context, should allow many potential developers to familiarize fast with the
framework. In the past, the majority of visualizations has been programmed
in Java [Coo+14], which facilitates porting existing visualizations to LiveCG.

Furthermore, the major functional requirements can be fulfilled using Java.
On the one hand, graphical user interfaces are an integral component of our
framework. Java features, through Swing, a rich toolkit for creating such inter-
faces that can be used without modifications on all major desktop platforms.
On the other hand, our framework provides a number of programming libraries.
Java’s object-oriented design and strong type system enable the creation of
reusable and clear programming interfaces. With JTS, there is also a geome-
try library available, which can be relied upon for robust computation of basic
geometric operations and predicates. We can thus omit to implement them on
our own, which is good, because even the simplest geometric operations tend
to be tricky to implement robustly.

Arguably, when trying to reach as many users as possible, the web-browser
is nowadays the obvious choice of technology [KS13]. In this respect, Java
may not be the best choice after all, because the classical approach of bringing
Java-based applications to the browser — applets — is unable to compete with
modern, browser-specific technology, such as HTML5 and JavaScript. Unlike
applets, they run on any modern browser and thus are not only available on
the desktop, but also on mobile devices like smartphones and tablets.

Nevertheless, I think Java is still a viable choice for this project. On the
3https://www.gnu.org/copyleft/gpl.html
4https://github.com/sebkur/live-cg
5https://github.com
6http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html, accessed

3/16/2014

https://www.gnu.org/copyleft/gpl.html
https://github.com/sebkur/live-cg
https://github.com
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

CHAPTER 3. LIVECG 13

one hand, LiveCG is primarily designed as a classical desktop application for
which Java and Swing are an excellent platform. On the other hand, it is indeed
possible to produce HTML5 and JavaScript based front ends using Java, when
utilizing frameworks such as the Google Web Toolkit (GWT). It compiles Java
source code to JavaScript and provides an API for creating browser based user
interfaces. Special measures have been undertaken to enable compatibility of
our system with GWT, which does not support all packages from the Java
Standard Edition. Particularly, the package java.awt.geom, which contains
useful implementations of the Shape interface, is not available there. Its usage
has therefore been replaced with a compatibility layer. For this purpose, a small
separate project called NoAWT7 has been created, which basically provides a
refactored, GWT-compatible version of this package.

3.3 Data Model

A data model is needed to represent the basic geometric objects that the
algorithms operate on in their implementation. A number of geometric objects
is relevant to the domain: coordinates, nodes, line segments, lines, polygonal
chains, polygons, planes, halfplanes, curves, different kinds of splines, triangles,
rectangles, circles, ellipses and polyhedrons.

While there are in theory many types of objects that one might want to
support through appropriate data structures, complexity increases with the
number of supported object types. On the one hand, the more data types
available, the more geometric problems could be modeled. Consequently, more
visualizations could be implemented and hence, the more complete the frame-
work. On the other hand, every extra data type supported results in additional
complexity in various components of the framework: the file format has to sup-
port them, the user interface must provide means for manipulating them and
the visualization implementations have to handle them. Facing this trade-off
of complexity versus completeness, only a small subset of geometric objects
has been chosen for implementation. The selection has been made such that
all planned visualizations could be realized.

The basic geometric objects are: coordinates, nodes, polygonal chains and
polygons (see Figure 3.1 for examples). A coordinate is a simple data structure
that merely groups a tuple of floating point values to represent a point on the
plane. A node has a coordinate and represents a point on the plane as well. The
difference between a node and a coordinate is that the more complex objects,
namely chains and polygons, consist of the former. Polygonal chains model a
connected list of line segments and are implemented as a list of nodes. They
may be closed in which case a segment exists from the last back to the first node

7https://github.com/sebkur/NoAwt

https://github.com/sebkur/NoAwt

14 CHAPTER 3. LIVECG

A

B C
D E

Figure 3.1: Supported geometric objects: node (A), polygonal chain (B), closed polygonal
chain (C), polygon (D) and polygon with holes (E)

of the chain. A closed polygonal chain is also called a polygonal ring, or ring
for short. Polygons model a bounded area in the plane where the boundary of
the polygon is made up of connected line segments. A polygon is implemented
such that it consists of a polygonal ring defining the outer boundary of the
polygon plus optionally a number of polygonal rings that define holes in the
polygon.

The data structures have been designed such that it is possible to explicitly
model sets of objects as a network. That means for instance that two polygonal
chains may not only coincide in individual nodes, they may actually share
instances of the same node as part of their definition. If the coordinate of that
node is altered, the shape of all chains that contain that node will change.
Furthermore, the node “knows” that it is part of those chains, so that it is easy
to traverse the network of geometric objects. To accomplish this, the data
structures have been implemented with some redundancy. More precisely,
apart from the chains storing references to the containing nodes, the nodes
store additional references to the chains that they are part of. This redundancy
allows for easy and fast examination and traversal of the network of objects,
but comes at the cost of more expensive and complicated object manipulation.

The data types described above are those that are available as input to
algorithms. For programmers, some additional data structures are provided
that can be helpful when implementing visualizations. For example, there are
abstract data types to represent rectangles, line segments and the DCEL.

3.4 File Format

It should be possible to store scenes of geometric objects in files so that they
are available for later usage, exchange or publication. Evidently, some file
format is required for storing the data described in the previous section. The
encoded files should be editable with a simple text editor, i.e. be plain text
and should have a descriptive and yet simple and compact structure. Apart
from using the framework’s input editor, this will allow users to manipulate

CHAPTER 3. LIVECG 15

files with their favorite tools and makes it easy to port existing data to the file
format.

For various reasons, it is advisable to use an already established file format.
For instance, this would make it possible to use existing viewers for inspect-
ing those files or advanced editors for manipulating them. Also, there might
already be data available that could be reused in the project. Since geometric
data is widely used in many applications, a lot of different file formats exist
that could possibly serve as a data format for LiveCG. Possibly viable candi-
dates include the file format used by the OpenStreetMap project (.osm files),
the Object File Format (.off files), used for example by the CGAL project,
the Geography Markup Language (.gml files) or the Well-known-text (WKT)
representation of geometric objects.

However, no format that appeared appropriate for our data of concern and
all of our requirements could be found. Hence, a simple XML format has been
designed. The recommended file name extension is .geom and it is inspired by
some of the aforementioned formats. The basic structure is similar to that of
.osm files, but it has been made less verbose with ideas borrowed from the way
complex objects are described in .off and .gml.

Although the structure of our file format is probably most precisely de-
scribed by its Document Type Definition (DTD), an example may be easier
to understand. Listing 3.1 defines the geometric objects shown in Figure 3.1.
Like any .geom file, it contains a scene XML element that defines width and� �

1 <scene width="570.0" height="180.0">
2 <node id="1" x="235.841" y="145.987" />
3 <node id="2" x="183.689" y="160.733" />
4 <node id="3" x="112.211" y="142.069" />
5 ...
6 <node id="42" x="419.0" y="70.0" />
7 <node id="43" x="397.0" y="27.0" />
8 <node id="44" x="321.0" y="13.0" />
9 <chain closed="false">1 2 3 4 5 6 7</chain>

10 <chain closed="false">8</chain>
11 <chain closed="true">9 10 11 12 13 14 15</chain>
12 <polygon >
13 <shell >16 17 18 19 20 21 22</shell >
14 <hole>23 24 25 26 27</hole>
15 <hole>28 29 30 31</hole>
16 </polygon >
17 <polygon >
18 <shell >32 33 34 35 36 37 38 39 40 41 42 43 44</shell>
19 </polygon >
20 </scene >� �

Listing 3.1: A file defining some geometric objects

height of the document. This element contains children defining the geometric
objects on the scene. Three types are available in correspondence to the data

16 CHAPTER 3. LIVECG

model: nodes, chains and polygons. A node stores a coordinate with attributes
x and y and has an identifier id so that it can be referenced by other objects.
Chains contain an ordered list of identifiers that reference nodes. The refer-
enced nodes define the segments of the polygonal chain. The property closed

can be used to mark a chain as being a ring. Polygons contain a mandatory
child element shell that defines the outline of the polygon and optionally a
number of hole elements that define the holes of the polygon. Both shell

and hole are represented the same way as polygonal chains, only that they are
implicitly closed.

Should the data model of LiveCG be extended in the future, it would be
easy to extend the file format accordingly as well. To support more different
types of objects, we could simply define corresponding XML elements. The
system’s file parser has been implemented to be forward compatible, i.e. it is
able to handle files that contain unknown elements. It ignores such elements
and informs the user about the unhandled data.

User Perspective

4
From the user’s point of view, an important component — and also the starting
point for any visualization — is the main user interface (see Section 4.1). With
this tool, the user selects or designs the input for an algorithm and launches
visualizations in separate dialogs (see Section 4.2). Apart from this graphical
interface, the user can use a command-line interface for various purposes (see
Section 4.3).

4.1 Main Graphical User Interface (GUI)

Algorithms usually transform some input into output. Consequently, offering
the user a means for defining input data for algorithms is a basic challenge
that every visualization faces. More often than not, standalone visualizations
provide only rudimentary methods for this task, which affects negatively the
overall usefulness of the visualization. In contrast, LiveCG provides a sophisti-
cated software component that can be used for the creation and manipulation
of geometric objects and their corresponding data structures. The main user
interface puts this task at its center and is organized around it. At its core, the
application maintains a current scene of geometric objects. Such scenes can
be loaded from and stored to files, and can be manipulated by the user with
different tools. The scene’s objects can then be used as input to the different
visualizations that are available through the Visualizations menu. The main
window (see Figure 4.1) contains a menu bar, a toolbar, a status bar, and, at
its center, the geometry editor.

Geometry Editor

The geometry editor displays the currently loaded scene of geometric objects.
Basic operations on the scene are available via the File menu and via buttons
in the toolbar: a new, empty scene can be created and it can be stored to and
loaded from file.

Using different tools, the scene’s objects can be manipulated. Creating,
altering and deleting objects is primarily achieved by using the mouse pointer.
There are six different mouse modes, selectable via the toolbar or via keyboard
shortcuts:

17

18 CHAPTER 4. USER PERSPECTIVE

Figure 4.1: The geometry editor

• Select and Move. Objects can be selected in this mode. Clicking
additional objects while holding Shift ⇑ will add them to the current
selection, and clicking already selected objects will deselect them. Se-
lected objects can be moved around the scene by clicking one of them
and dragging the mouse. When moving nodes, a snapping mode can be
enabled by holding Ctrl , which will snap a dragged node to other nodes
on the scene, thereby merging them to a single node.

• Rotate. Selected objects can be rotated by dragging the mouse around
the initial drag position of the mouse.

• Scale. Selected objects will be surrounded by a rectangle with eight
anchor points that can be used to scale those objects in either direction.

• Rectangular Selection. Clicking and dragging creates a rectangle on
the screen. After releasing the mouse button all objects within the rect-
angle will be selected.

• Draw Segments. This mode is used for creating geometric objects.
When no object is currently selected, a new object is created once the
mouse is clicked. If a single node is selected, clicking will convert the node
to a polygonal chain by creating an initial segment that connects the
previously selected node and the current mouse position. If a polygonal
chain and one of its endpoints are selected, clicking will add an additional

CHAPTER 4. USER PERSPECTIVE 19

segment to the active chain. When doing so, the chain remains selected
and the new node becomes selected, so that further segments can be
added by subsequent clicks. A polygonal chain can be closed by holding
Ctrl while clicking anywhere on the scene.

• Delete. Objects or individual nodes can be deleted from the scene by
selecting them with the mouse. When deleting a node from a polygonal
chain, the previous node will normally be connected to the next node.
When holding Ctrl while deleting a node, the polygonal chain will be
split in two separate chains instead.

Object dialog

The Object dialog can be reached via the menu (Window → Object dialog). It
displays information and controls depending on the currently selected objects,
thereby offering means to operate on them. When a single node is selected,
its position can be changed through text fields displaying its coordinates. In
addition, the process of snapping and thereby merging nodes can be reversed.
By splitting a merged node, several independent nodes reappear on the scene
that can be manipulated individually. When a polygonal chain is selected, a
toggle button controls whether it is closed or not.

Operations on multiple selected objects can be performed as well: a filter
menu allows the user to narrow the selection down to specific types of objects.
For example it is possible to remove all nodes from the current selection, or to
keep nothing in the selection except for closed chains. One or more rings can
be converted to a polygon provided that one of them contains all other selected
rings. Reversing that operation converts a polygon to its constituting closed
polygonal chains. As a means for generating convex polygons, the dialog also
offers a button for creating the convex hull of all currently selected objects and
inserting it onto the scene as a polygon.

Apart from the currently implemented features, several more would cer-
tainly be useful: for example, it would be convenient to have controls for
performing Boolean set operations on multiple polygons, or for simplifying
polygonal chains.

Menu and Toolbar

The first three buttons in the toolbar provide the basic scene operations —
new, save and load — and the next six buttons allow the user to select the
current mouse mode. The next component is a drop down menu attached to
a text field that can be used to alter the zoom used for displaying the scene.
When the scene plus some extra margin does not fit into the window, the
viewport can be moved, which is indicated by the scrollbars at the sides being

20 CHAPTER 4. USER PERSPECTIVE

enabled. Dragging the scene while the right mouse button is pressed moves
the scene within the viewport.

The menu Presets offers access to the database of scenes bundled with
LiveCG. When opened, it displays a number of available scenes that can be
loaded into the editor. The scenes are organized hierarchically, grouped by the
type of objects contained or by the visualization they have been designed for.

Opening the Visualizations menu gives access to the implemented visu-
alizations of the system. This menu is also organized hierarchically, grouping
the available visualizations by their topic. Choosing one of the visualizations
entries will launch it in a separate dialog. The input for the visualization is
taken from the scene currently opened in the editor.

4.2 Example: a Visualization Dialog

Once a visualization has been selected in the menu, a visualization dialog will
appear. Figure 4.2 shows an example — the dialog for the Shortest Paths in
Polygons visualization (see Section 6.5 for details about the visualization).

Figure 4.2: Dialog for Shortest Paths in Polygons

A dialog typically contains a menu bar, a toolbar, some control widgets
and a visualization panel. Some visualizations may also show secondary di-

CHAPTER 4. USER PERSPECTIVE 21

alogs that provide additional information, for example about involved data
structures. The visualization panel displays the algorithm’s current status in
a meaningful way.

Usually, the algorithm’s progress can be controlled by buttons in the toolbar
and through specific control widgets. In this example, two sliders exist to
control the two nested loops of the algorithm. The outer loop of the algorithm
is over the diagonals of the polygon’s sleeve. Moving the first slider controls
which diagonal is currently under consideration. For each diagonal, the inner
loop is executed, with which the algorithm traverses the nodes of the current
funnel to find a valid funnel for the next step of the iteration. The second
slider controls the progress of this traversal of the funnel.

The arrow buttons in the toolbar can be used for controlling the algorithm’s
status as well. The first two buttons control the major steps, i.e. move to the
previous and next diagonal, while the next two buttons control the minor steps
of the algorithm, i.e. the funnel traversal.

The toolbar usually contains some additional controls for manipulating the
visualization’s appearance. Typically, the visibility of certain features can be
toggled. In this example only one such option is available, which toggles the
visibility of the dual graph of the triangulation of the polygon. As with most of
the visualizations, there is also a zoom control widget that lets the user define
the magnification of the visualization panel. In our example, the magnification
has been set to 200%.

Exporting Images

Each visualization can be exported to different image file formats. This func-
tionality is available through the menu (File → Export...). The saved image
will contain a snapshot of the algorithm at the same point of execution as in
the dialog and with the same display settings as selected using the configu-
ration options of the user interface. Currently the graphics can be stored as
raster images (PNG), vector graphics (SVG), LATEX-figures (TikZ) and Ipe
files. Section 5.2.2 explains the available formats in detail.

Textual Explanation

Some algorithms feature textual explanations. When an algorithm supports
this, the Description dialog (see Figure 4.3) updates whenever the algorithm’s
status changes and displays an explanation for the current step. The dialog
logs all messages that have already been displayed before and highlights the
current message with a boldface font.

22 CHAPTER 4. USER PERSPECTIVE

Figure 4.3: The Description dialog showing some explanations for Shortest Paths in
Polygons

4.3 Command-Line Interface (CLI)

There are three different executables of the framework currently available:
livecg-ui, livecg-visualization and livecg-create-image. All of them
are available as bash and batch files for usage on Unix-based systems and on
Microsoft Windows respectively.

The script livecg-ui launches the main user interface that has been pre-
sented in Section 4.1. It accepts as an optional argument a path to a geometry
file to open as the initial scene:

> livecg-ui my-input.geom

To open a specific visualization for a geometry file directly, the livecg-

visualization command may be used. The visualization flag is used to
select the desired user interface to launch. Another argument is required which
specifies the path to a geometry file to use as input for the visualization:

> livecg-visualization my-polygon.geom

-visualization triangulation

The script livecg-create-image can be used to export an image file for
a specified input file using one of the available visualization implementations.
The user needs to specify input and output file, the visualization, and the
desired output format. In addition it is possible to configure the visualization’s
appearance via command-line switches and to set the algorithm’s status:

> livecg-create-image -input my-chains.geom

-output my-freespace.ipe

-visualization freespace -output_format ipe

-Dreachable-space=true -Dfreespace-markers=true

-Depsilon=100

CHAPTER 4. USER PERSPECTIVE 23

A nice feature would be an extension to the export functionality of LiveCG
to support several operations for sequences of visualization artifacts. These
features could then be integrated in both the main UI as well as the CLI.
The execution of an algorithm on some input yields a number of interesting
states, and for each state an image of the visualization can be generated.
This sequence of images could be combined into a motion picture that would
capture the dynamics of the algorithm in a single movie and which could be
easily published on the web for example. Additionally, the images could be
assembled to LATEX or HTML documents. Such documents could be enhanced
by adding descriptions generated by the text output module. Combined, this
should provide a nice presentation of the algorithm in a printable or browsable
form.

4.4 Advanced Configuration

Most visualizations allow the user to partially modify their appearance in terms
of the features that are being displayed. For example, in the Shortest Paths
in Polygons visualization, it is possible to toggle whether the dual graph of
the triangulation should be displayed. Control widgets for such properties are
typically located in the toolbar of the visualization dialog and they can also
be controlled via the CLI.

However, there are typically many additional aspects of a visualization
that are in principle configurable. This concerns primarily lower level visual
properties, such as colors used for drawing and the sizes of individual elements.
A configuration file has been introduced that allows developers to factor out
those properties to a central place. As a result, users can configure them by
modifying this file, without looking into the visualization’s actual source code.

The configuration file uses a custom file format that basically defines a
dictionary of named properties. Each property is identified by a verbose, dot-
separated name that maps to an associated value. The format is similar to
that of standard Java .properties-files, but names of properties can be hier-
archically structured to make the file easy to read and maintain.

Listing 4.1 shows an excerpt of the configuration that defines properties for
the Shortest Paths in Polygons visualization. It defines colors for some of the
involved objects and the widths used for drawing line segments. It defines for
instance that the background of the visualization is white, while the polygon
is drawn in light gray. Moreover, it defines that the polygon’s outer boundary
is drawn with lines with a width of 2 units, while the lines to display the
diagonals have a width of only 1 unit.

To increase user-friendliness in the future, a means for manipulating the
lower level properties should be integrated into the user interface. Since only a
limited number of value types occur, generic components could be implemented

24 CHAPTER 4. USER PERSPECTIVE

� �
1 algorithm.polygon.shortestpath {
2 ...
3 width {
4 polygon = 2.0
5 diagonals = 1.0
6 dual_graph = 1.5
7 path = 2.5
8 substatus = 2.5
9 substatus.bg = 6.5
10 }
11 ...
12 colors {
13 background = #ffffff
14 boundary = #000000
15 diagonals = #000000
16 dualgraph = #eeee00
17 polygon = #dddddd
18 sleeve = #bbbbbb
19 sleeve.done = #3300 ff00
20 ...
21 }
22 ...
23 }� �

Listing 4.1: Some properties for Shortest Paths in Polygons

that would allow for easy configuration of individual properties. All properties
relevant to a single visualization could then be aggregated into a configuration
dialog.

Developer Perspective

5
For developers, LiveCG is a framework for creating visualizations. One benefit
of using our system is that they do not have to care about how the end user
defines the input for their algorithm, because the framework already provides
a sophisticated editor for this purpose (see Section 4.1). Instead they can
immediately focus on their actual endeavor of creating the visualization itself.

To support the developer with this task, the framework provides a num-
ber of data structures, software components and utilities. They aim at saving
the developer’s time or at accomplishing valuable features easily. This chap-
ter explores those facilities. It starts with a guideline for the implementation
of visualizations, thereby explaining relevant components of LiveCG (see Sec-
tion 5.1). We will then look at the rendering subsystem (see Section 5.2) and
the text output module (see Section 5.3).

5.1 Implementing Visualizations

The Model-view-controller (MVC) approach is the standard pattern used to
design graphical user interfaces with Java Swing. The pattern is also well
suited for the implementation of algorithm visualizations, and in consequence,
many components of LiveCG are geared towards this scheme. Typically, it is
a bit difficult to clearly separate view and controller as they are often quite
interweaved. As Eckstein et al. [ELW98] point out, Swing itself mostly uses a
modified version of the pattern in which both components are implemented as
a single object. Although the same difficulty applies to visualizations, there are
components that are primarily concerned with the presentation, while others
are primarily concerned with the manipulation of the model.

Model-View-Controller in LiveCG

Figure 5.1 gives an overview of the MVC pattern used in LiveCG. In a typical
interactive situation the model is the algorithm logic, the view is the visual
representation of the current algorithm state and the controller are some UI
components that let the user manipulate the algorithm’s status. On the other
hand, when exporting an image file on the command-line the situation may
look a bit differently. The model will still be the algorithm, but the view may

25

26 CHAPTER 5. DEVELOPER PERSPECTIVE

then be a component that renders the visualization to a file. Moreover, the
controller is now a module that parses command-line options and sets the
status of the algorithm to a user specified state to select the snapshot of the
animation that the image will represent.

View

AlgorithmPainter

Model Controller

Dialog

CLI

«interface»
VisualizationPainter

setWidth()
setHeight()
setPainter()
paint()

«interface»
Algorithm

addAlgorithmWatcher()
removeAlgorithmWatcher()

«interface»
Painter

drawRect()
drawLine()
drawPolygon()
. . .

MVC

Figure 5.1: Class diagram for creating visualizations with the MVC pattern

Model

At the core of any visualization is an implementation of the algorithm or the
data structure of interest. In terms of MVC, the algorithm is the model, and
the view will be connected to the algorithm through the Observer pattern.
To enable this functionality consistently, LiveCG provides the Algorithm in-
terface, which algorithm implementations should implement. The interface
declares methods that can be used for subscribing listeners on changes to the
algorithm’s status. Since the implementation of these methods tends to be
the same for all algorithms, the class DefaultAlgorithm, which already im-
plements the Algorithm interface, can be used as a superclass.

View

Another central component of the visualization is the view, which presents an
algorithm’s current status to the user. For geometric algorithms the most in-

CHAPTER 5. DEVELOPER PERSPECTIVE 27

teresting part is typically a graphical depiction of involved geometric objects.
One design goal of LiveCG is that these graphics can not only be displayed on
the screen, but can also be exported to files in different formats for postpro-
cessing.

To achieve this, we need to encapsulate the logic for creating the graphics as
a module that can be used on different output targets. Therefore, we create an
AlgorithmPainter class which implements the actual visualization on top of
an abstraction layer. In practice this means that we program the visualization
against the Painter interface which provides the necessary drawing primitives
(see Section 5.2.1). For the different use cases, we can then create lightweight
views that internally utilize the AlgorithmPainter to create the desired output
through an appropriate back end (see Section 5.2.2). The central interface
that the AlgorithmPainter has to implement is the VisualizationPainter.
Conforming to this interface establishes compatibility with various components
of LiveCG.

A simple Swing view can be created using a VisualizationPainter with
only a few lines of code. However, enabling advanced features such as mag-
nification and panning, which allow the user to zoom into details of the view,
requires more work than that. Since such functionality is expected from vir-
tually every visualization panel, we provide an extendable base class for this
case that already implements this functionality transparently.

Controller

For a complete integration into LiveCG, two kinds of controllers are necessary
for steering an algorithm’s flow of execution and the visual appearance of the
visualization: a UI controller and a command-line parser.

The UI controller will be embedded into the visualization dialog and con-
sists of ordinary Swing widgets. Ready-made components such as buttons,
toggle buttons and sliders typically suffice, but sometimes it is reasonable to
use more specific non-standard widgets. LiveCG does not enforce any policies
on widget usage and does not provide specific reusable widgets yet. However,
for consistency of appearance it is advised to reuse the icons that ship with
the application, e.g. for controls that steer an algorithm’s execution (, , ,
, , ,).
The command-line parser is relevant for the CLI that is capable of creat-

ing snapshots of algorithms from the terminal or via scripts. To integrate a
visualization into the CLI, a factory component that implements the Visual-
izationSetup interface has to be created. This object receives the geometric
input and configuration options from the CLI and essentially creates a Vi-

sualizationPainter instance in the user specified configuration and state of
execution. For this purpose, the command-line utilities accept a status switch

28 CHAPTER 5. DEVELOPER PERSPECTIVE

to select the algorithm’s status in an algorithm-dependent argument format.
Additionally, all options that are prefixed with a capital D will populate a
Properties object that will be passed to the parser as well. These properties
can be used to adjust the visualization’s configuration that is available through
the UI in an interactive setup.

Miscellaneous

Some additional problems have to be solved for each visualization.
To make it available to users, it has to be accessible through LiveCG’s main

UI and the CLI. Therefore, we have to create an entry in the Visualizations
menu that launches the respective dialog. Also, we have to add an additional
case to the CLI’s parsing routine that instantiates the appropriate visualization
factory.

In order to make advanced configuration (see Section 4.4) possible, we have
to factor out certain rendering parameters to the configuration file. Develop-
ers can simply add custom properties to this file and access them using the
framework. Convenience methods are available that receive as a parameter a
property name and return values such as numbers or colors.

To let the user export the content of the canvas to the various image for-
mats, we have to provide the export entries for the File menu. These menu
entries can be created through a helper class which creates them generically
based on an arbitrary VisualizationPainter instance. By design, every visu-
alization’s AlgorithmPainter implements this interface and can thus be passed
to the helper methods.

5.2 Rendering Subsystem

The graphical part of a visualization may be used for several purposes. Hence,
we would like the visualizations to produce artifacts in various output formats,
be it raster or vector graphics or special file formats that allow for convenient
postprocessing. The framework allows creators of visualizations to abstract
from the details of those formats and create their visualizations with one simple
yet sufficiently powerful API. This is achieved through the definition of an
abstraction layer. It consists of a drawing interface against which visualization
have to be programmed (see Section 5.2.1) and for which several different back
ends exist. As a result, the graphics can not only be displayed on screen, but
can also be exported to different file formats. Currently supported file types
are PNG, SVG, TikZ and Ipe (see Section 5.2.2).

CHAPTER 5. DEVELOPER PERSPECTIVE 29

Drawing layer

Back ends

«interface»
Painter

AwtPainter SvgPainter TikzPainter IpePainter

Figure 5.2: Components of the rendering subsystem

5.2.1 Drawing Layer

The drawing layer1 provides a means for developers to realize the graphical
output of their visualization. It comes as an interface called Painter which
exposes a set of methods that are very similar to those provided by many
graphics frameworks such as the Java 2D Graphics API 2 or the Cairo3 graphics
library. Although it is quite extensive, it does not offer all methods that are
typically supported by those frameworks. Instead, it has been kept deliberately
simpler to keep the effort for the realization of several back ends manageable.

Two paradigms of drawing guide the concept of most operations: drawing
paths and filling shapes. Hence, each operation usually comes in two similar
forms — one for drawing and another for filling. For example, there is a method
drawRect that draws a rectangle and a method fillRect that fills it. There
are similar methods for other primitive geometric objects such as circles or line
segments. The visual result of every operation depends on the style that has
been configured in advance. For both types of operations, the color can be
selected, and for drawing, the width and other style attributes of the stroke
can be defined through appropriate methods.

Complex Objects

In addition to the methods for drawing primitive geometric objects, there are
also methods for drawing more complex shapes. On the one hand, special-
ized methods have been defined for the data structures from LiveCG’s data
model: there are methods for drawing polygonal chains and for drawing or
filling polygons. These methods have been added to the interface for conve-
nience, because programmers of visualizations will often be working with such

1see Appendix A.1
2http://docs.oracle.com/javase/tutorial/2d/
3http://cairographics.org/

http://docs.oracle.com/javase/tutorial/2d/
http://cairographics.org/

30 CHAPTER 5. DEVELOPER PERSPECTIVE

objects and thus they should be easily drawable. In general it is advisable to
use the Java Collections Framework4 when working with Java. To facilitate
working with those classes, there is also a method for drawing a path defined
by an ordinary list of coordinates.

On the other hand the Shape class of the AWT package included in the stan-
dard JVM provides powerful methods for creating complex shapes for drawing
purposes. For instance, Shape implementations for various primitive objects
can be created, Boolean set operations can be applied to them and they can be
modified using affine transformations. Drawing them is supported directly as
programmers that are used to working with Java’s standard graphics library
should find this convenient. Also, porting existing AWT-based visualizations
to the framework is hereby simplified in case they rely on Shape classes.

Stroke styles

When drawing objects, the appearance of the created strokes can be influenced.
First of all, the width of the stroke can be configured. Moreover, drawing
operations can be carried out using different stroke styles. Our drawing layer
currently supports continuous and dashed strokes. By default, strokes are
continuous. Dashed strokes are defined by a dash pattern which consists of a
list of numeric values. Each value defines, in alternating order, a solid or a
gap section of the stroke. Strokes are then drawn by applying this pattern to
the requested path repeatedly. Additionally, a phase value has to be supplied
which defines a start pointer into that pattern and which can be used to shift
the pattern along the drawn path.

Drawing frameworks usually provide a means for influencing the stroke’s
cap-style and join-style. The cap-style defines the shape of the pen tip and
the join-style controls the way adjacent line segments will be joined. Our
framework currently does not offer control over those options. Instead, it
instructs the back ends to use both a round cap-style and a round join-style.

Text

Rudimentary support for creating text has been implemented. However, no
support for configuring the text style is available, because this would not be
well mappable to some of the supported back ends. For example, setting font-
family and font-size would not be applicable to formats like TikZ and Ipe.

Raster Images

Raster images can be drawn onto the canvas as well. On the one hand, we can
illustrate drawings using bitmap icons, and on the other hand, we can create

4http://docs.oracle.com/javase/tutorial/collections/

http://docs.oracle.com/javase/tutorial/collections/

CHAPTER 5. DEVELOPER PERSPECTIVE 31

and include diagrams that cannot be well represented as vector graphics. For
example, a heat map would best be created as a raster image and then drawn
onto the canvas as such.

Clipping and Transformations

All operations mentioned above are subject to both clipping and transforma-
tions that have been applied to the canvas before using them. Clipping can be
used to restrict the area to which other drawing operations apply. For exam-
ple, we can apply a rectangular clip. Now, for each shape that is filled, only
the intersection of the shape with the clipping rectangle becomes visible in the
drawing. Furthermore, arbitrary shapes can be used for clipping, and subse-
quent calls to the clipping methods will further restrict drawing operations to
the intersection of all supplied shapes.

Transformations interfere with the other operations in a similar way. Every
object that is drawn using one of the drawing methods is first transformed
using the current transformation. Using transformations allows us to easily
reuse already implemented drawing code. For example, we can scale and move
the output of a complex drawing operation to a different region on the canvas
without modifying the operation itself or calling it with different parameters.

5.2.2 Drawing Back Ends

Different back ends exist for the rendering subsystem. They delegate calls to
the drawing layer to appropriate operations on their respective output targets.

AWT Back End

The AWT back end utilises the Java 2D Graphics API. It can be used for
implementing UI components and for generating raster images.

Custom Swing UI components such as panels for displaying a visualization’s
graphics are generally implemented by extending a basic class such as JPanel
and overwriting its paint() method. This method receives as a parameter
a Graphics2D object that is used to apply drawing operations to the canvas.
Our AWT back end accepts a Graphics2D instance as a parameter as well, and
delegates all drawing operations to that object.

Raster images can be created in Java by constructing BufferedImage in-
stances. They represent in-memory images and offer means for obtaining a
Graphics2D instance that operates on the underlying image. Our back end
can be instantiated using this object to render the visualization to the image.
Using the ImageIO API, they can be exported to various image file formats,
such as BMP, JPEG, PNG and GIF. By default, the framework stores images
in the PNG format, because this is a widespread and open file format with
lossless compression.

32 CHAPTER 5. DEVELOPER PERSPECTIVE

SVG Back End

Scalable Vector Graphics (SVG) is an open, XML-based vector image file for-
mat. Unlike raster images, vector graphics can be scaled arbitrarily without
causing pixelation effects. The SVG back end has been implemented using
Batik5, a framework for creating SVG graphics with Java. Using Batik’s ab-
straction layer for the XML file’s Document Object Model (DOM), the required
SVG elements can be created using Java’s standard DOM interface6.

PGF/TikZ Back End

The Portable Graphics Format (PGF)7 is a drawing framework for TEX/LATEX.
It is a low-level graphics library that can be used in TEX documents for em-
bedding graphics. It is portable in the sense that it can be used in conjunction
with the different publishing file formats for TEX documents, such as DVI, PS
and PDF. To achieve this, it operates in turn with several back ends. TikZ is
a front end for PGF that exposes a higher level interface of TEX-macros that
can be used for drawing images. Our back end creates simple text files that
consist of such macros that can then be included into normal TEX documents
within a tikzimage environment.

Ipe Back End

Ipe8 is a vector drawing program developed and maintained by Otfried Cheong
[Sch95]. It specializes in the creation of drawings for publications in compu-
tational geometry. The graphics are intended to be used in the LATEX envi-
ronment and in fact the resulting PDF files that can be included into TEX
documents are in turn produced using LATEX.

Ipe uses an XML file format to store its drawings. Our back end produces
compatible XML files using Java’s standard DOM interface. These files can
then be converted to PDF using command-line utilities that ship with the Ipe
distribution. Alternatively, they can be opened and postprocessed using the
Ipe editor and stored as PDF from within the program.

Implementation Notes

Mapping basic drawing operations to any of the underlying frameworks is a
straight-forward process, because the respective APIs are usually quite similar.
What tends to be more complicated is the implementation of clipping and
transformation operations and the support for raster images.

5http://xmlgraphics.apache.org/batik/
6https://jaxp.java.net/
7http://www.ctan.org/pkg/pgf
8http://ipe7.sourceforge.net/manual/manual.html

http://xmlgraphics.apache.org/batik/
https://jaxp.java.net/
http:// www.ctan.org/pkg/pgf
http://ipe7.sourceforge.net/manual/manual.html

CHAPTER 5. DEVELOPER PERSPECTIVE 33

Most formats support transformations natively, but with Ipe for example,
this functionality could not be found in the documentation. To support trans-
formations anyway, this deficiency has been compensated by actually applying
the transformations to the shapes before inserting them into the document.
In contrast, with SVG for example, transformations can be specified in the
markup, and they will not be applied to the shapes until a renderer displays
the file.

Clipping is natively supported by all back ends. However, with TikZ,
errors occurred regularly when postprocessing files that make extensive use of
this technique. It turned out that the LATEX rendering engines have problems
handling shapes that extend far beyond the image boundaries, even when they
are clipped to some area within that boundaries using the native clipping
operations. To avoid such problems, all shapes are additionally clipped to a
safety rectangle which is slightly larger than the image itself. To actually apply
the clipping to the shapes, a clipping algorithm for arbitrary shapes had to be
found9. As a consequence, transformations had to be explicitly applied to all
shapes as with the Ipe back end. Otherwise, it would not have been possible
to clip them to a rectangle that is defined in untransformed coordinate space.

Except for TikZ, all back ends are able to embed raster images into their re-
spective file format directly using some special encoding technique. For exam-
ple, with SVG raster images can be included into the XML markup as Base64-
encoded PNG files. With TikZ however, this is not possible, and raster images
can only be stored in separate files that are then included into the drawing by
referencing that file within the file system. Although this works, this means
that a TikZ file that uses raster images will be accompanied by a directory
containing the referenced image files. Hence, users have to take care when
handling such files to keep the references intact.

5.3 Text Output Module

The text output module enables visualization implementations to explain their
graphics using text. It provides generic tools that can be used to display expla-
nations to the user and it defines interfaces that algorithms have to implement
so that those tools can be used with them. When an algorithm supports ex-
plainability, the Description dialog presented in Section 4.2 can be used to
display explanation corresponding to the current state of the algorithm’s exe-
cution.

To make a visualization compatible with this module, the algorithm has
to implement the Explainable interface. It defines a method that returns
the explanation for the current step of the algorithm as a list of strings. The

9http://javagraphics.blogspot.de/2007/04/shapes-clipping-to-rectangle.html,
accessed 3/16/2014

http://javagraphics.blogspot.de/2007/04/shapes-clipping-to-rectangle.html

34 CHAPTER 5. DEVELOPER PERSPECTIVE

Description dialog will display each of those strings in a separate line of its
text area.

The dialog requests explanations from the algorithm on demand and keeps
already displayed explanations visible. Depending on the UI, the user may
navigate through the algorithm’s execution in unpredictable order, skipping
individual steps for example, or rewinding to previously skipped steps. How-
ever, the dialog inserts new explanation snippets at the position within the
stream of explanations at which they would naturally occur when explaining
the complete algorithm. To maintain the correct order of all snippets, the
algorithm has to implement another interface, which provides a means for de-
termining an algorithm’s current status in form of a string. This string has to
be unique for each of the algorithm’s steps and will be used by the Description
dialog to establish the order between individual explanations. Thus, these sta-
tus strings have to be mutually comparable and their lexicographic order has
to reflect the order of the steps of the algorithm.

Implemented Visualizations

6
A number of visualizations have been developed for data structures and al-
gorithms. Some of them are rather static and merely provide a drawing of
a data structure, the result of an algorithm or an important concept that it
uses. Most algorithm visualizations are interactive animations. They provide
an interface for stepping through the stages of the algorithm and display draw-
ings of individual snapshots. Each of the implemented visualizations will be
described in the following sections in some detail. The illustrations have been
produced with the respective visualization using the Ipe back end.

6.1 Doubly-Connected Edge List (DCEL)

The visualization for the DCEL [MP78] is a static visualization that focuses
on the depiction of halfedges. Figure 6.1 shows an example of the graphics
produced by the visualization (b) for a small subdivision (a). As a basic layer,

(a) Input (b) DCEL

Figure 6.1: DCEL visualization

vertices and edges of the subdivision are displayed in the drawing as black disks
and blue line segments. On top of that, the halfedges (magenta) and their next
and previous pointers (green) are being displayed. The halfedges are depicted
as arrows parallel to their corresponding edge. They are slightly shifted into
the direction where their incident face is so that individual halfedges are clearly
visible. The arrowhead is reduced to a single line to prevent visual overload:
because the second line of the arrowhead is missing, the padding between
edge and halfedge can be reduced so that it becomes less likely for arrows

35

36 CHAPTER 6. IMPLEMENTED VISUALIZATIONS

to overlap. Each arrow is a little shorter than its corresponding edge, which
avoids overlapping of arrows as well and gives some space for displaying the
pointers to other halfedges. Two halfedges that are connected to one another
with their respective next and previous pointers are visually connected with a
curve that connects the tip of one arrow to the tail of the next.

This visualization can be used for inspecting the structure of the DCEL
for an arrangement itself, but can in particular be used as a building block for
more advanced visualizations that involve a DCEL data structure.

6.2 Fortune’s Sweep Line Algorithm for Computing
Voronoi Diagrams

Fortune’s Sweep [For87] is a sweep line algorithm that computes the Voronoi
diagram for a set of input points in O(n ⋅ logn) time where n is the number of
points. While the original algorithm by Fortune is actually more complicated
because it involves geometric transformations, the simpler variant presented
here has been given by Seidel [Sei88] and in more detail by Guibas and Stolfi
[GS88].

The Voronoi diagram is a subdivision of the plane into polygonal regions
such that exactly one region exists for each input point, which are called sites
in this context. The Voronoi region corresponding to a site p contains all points
on the plane that are nearer to p than to any other site. Figure 6.2 shows input
points (a) and the resulting Voronoi diagram (b) for a set of eight sites. The
blue lines are the Voronoi edges which describe the boundary of the Voronoi
regions. Endpoints of Voronoi edges are called Voronoi vertices.

A typical data structure for representing the Voronoi regions is the DCEL.
The underlying implementation of the algorithm constructs the DCEL and the
user of the visualization is able to switch between a simple display (b) and a
display that also shows the DCEL (c).

The dual problem to computing the Voronoi diagram is the computation
of the Delaunay triangulation. It is a triangulation of the input point set that
maximizes the minimum angle of the constituting triangles. Both problems
are tightly connected and thus it makes sense to integrate the Delaunay trian-
gulation into this visualization. When the user enables the respective option,
the triangulation will be shown with gray line segments as in Figure 6.2d.
Two points will be connected in the triangulation if and only if the respective
Voronoi regions are neighbors, i.e. they share a common Voronoi edge.

The visualization for Fortune’s Sweep is an interactive animation. As the
algorithm uses the plane sweep paradigm, the dimension of animation is the
position of the sweep line. In this implementation it is a vertical line that moves
from left to right. Different methods for navigating through the algorithm have

CHAPTER 6. IMPLEMENTED VISUALIZATIONS 37

(a) Input (b) Voronoi diagram

(c) With DCEL (d) With Delaunay triangulation

Figure 6.2: Fortune’s Sweep visualization

been implemented: a widget similar to a slider can be used to adjust the sweep
line position by dragging a handle with the mouse. Buttons can be used to
move it to the next or the previous event point or to the next or the previous
pixel on the screen. A playback mode is available that plays the animation like
a motion picture in either forward or backward direction. Figure 6.3 showcases
the graphics that the visualization produces for different positions of the sweep
line, which is displayed as a red vertical line that extends from the top to the
bottom. At the initial position (a) only the sweep line and the input points
are visible. In the other pictures, we can see a partially computed Voronoi
diagram with its DCEL and the so-called wavefront which consists of parabolic
arcs and extends from the top to the bottom of the diagram. The area left to
the wavefront is the area for which we have computed the Voronoi diagram up
to now.

A site event (b) occurs when the sweep line reaches one of the input points.
When this happens, a new parabolic arc will be inserted into the wavefront
and a new edge of the Voronoi diagram emerges. This happens at the position
where a horizontal ray shot from the site to the left hits the wavefront. While
the sweep line moves forward, the wavefront’s shape transforms, capturing
more and more of the plane. Although an efficient implementation of Fortune’s
Sweep would only consider the event points itself, the visualization can display

38 CHAPTER 6. IMPLEMENTED VISUALIZATIONS

(a) Initial position (b) Site event

(c) Intermediate position (d) Circle event

Figure 6.3: Fortune’s Sweep: various positions of the sweep line

intermediate positions (c) to illustrate the transition between consecutive event
points. During the transformation of the wavefront, an individual parabolic arc
may disappear from it because it gets covered by its neighbors completely. Such
events are called circle events (d). Whenever this happens, two incomplete
Voronoi edges will be joined, thereby creating a Voronoi vertex and a new
incomplete Voronoi edge.

The visualization has been developed based on an implementation1 by Al-
lan Odgaard and Benny Kjær Nielsen that has been created at the University
of Copenhagen in 2000 and is available through Github2. The original imple-
mentation was designed as a Java Applet using the AWT framework and has
been ported to LiveCG.

6.3 Partitioning Polygons into Monotone Pieces

This visualization is about a plane sweep algorithm by Garey et al. [Gar+78]
that partitions a simple polygon without holes into y-monotone pieces. It
takes O(n ⋅ logn) time where n is the number of vertices of the polygon. In
combination with an algorithm for triangulating monotone polygons it can be

1http://www.diku.dk/hjemmesider/studerende/duff/Fortune, accessed 3/16/2014
2https://github.com/sorbits/visual-fortune-algorithm

http://www.diku.dk/hjemmesider/studerende/duff/Fortune
https://github.com/sorbits/visual-fortune-algorithm

CHAPTER 6. IMPLEMENTED VISUALIZATIONS 39

used to give an algorithm for triangulating arbitrary non-monotone polygons
[Gar+78]. Our implementation, the visualization, and this description are
guided by the presentation of the algorithm by de Berg et al. [Ber+00].

(a) Input (b) Monotone pieces

Figure 6.4: Partitioning a polygon into monotone pieces

Figure 6.4 shows a simple polygon (a) and the resulting monotone pieces (b).
The algorithm classifies all vertices of the input polygon to be one of five types:
start (◻), end (◾), split (▴), merge (▾) or regular (●). The plane sweep method
is then used to partition the polygon into pieces that do not contain any split
or merge vertices anymore. Such pieces are y-monotone. The event points
of the sweep algorithm are the vertices of the polygon. Whenever a split or
merge vertex is encountered, a diagonal will be inserted by connecting it to
another vertex of the polygon. During the algorithm’s execution we make sure
that we always know which vertex we can connect such a diagonal to. The
implemented visualization is static: it only produces an illustration of the re-
sulting partition of the polygon. We can identify the inserted diagonals and
easily distinguish the different subpolygons as adjacent pieces will be filled with
visually contrastive colors. A future extension that animates the algorithm’s
steps would be desirable.

6.4 Triangulating Monotone Polygons

This algorithm triangulates a monotone polygon in linear time. It has been
presented by Garey et al. [Gar+78] to give, in combination with the one from
the previous section, an algorithm for triangulating arbitrary simple polygons
in O(n ⋅ logn) time.

Although the algorithm could be extended to support any monotone poly-
gon, we assume here that the polygon is y-monotone. We use the sweep
paradigm to add diagonals until we obtain a triangulation. The event points
are the vertices of the polygon, ordered from top to bottom by their y-coor-
dinate. Building a sorted list of those coordinates in linear time is possible
because the polygon is monotone: we basically have to merge the two mono-

40 CHAPTER 6. IMPLEMENTED VISUALIZATIONS

tone chains of the polygon which are already sorted with respect to y due to
their monotonicity.

(a) Start (b) 4 vertices on stack (c) Triangulated funnel

(d) Next step (e) Completed (f) Triangulation

Figure 6.5: Triangulating a monotone polygon

Figure 6.5 shows the kind of graphics that the visualization produces. Dur-
ing the algorithm, we maintain a stack containing at least two previously en-
countered vertices of the polygon that define a funnel-shaped subregion of the
polygon. Everything above that funnel is readily triangulated (green area).
Vertices are colored depending on their status. Either they have not been
considered yet (red), are currently on the stack (yellow) or will not be needed
anymore (green). The current vertex is shown in cyan.

At each event point, we remove some of the vertices from the stack and add
diagonals by connecting each of them to the current vertex. When the current
vertex and the one at the top of the stack are on opposite chains, the complete
funnel can be triangulated (see (b) → (c) → (d)). When they are on the same
chain, it may happen that only part of the funnel can be triangulated in that
step. After adding all possible diagonals, we push the two vertices of the lastly
added diagonal onto the stack and continue with the next vertex.

The resulting triangulation (e) can also be displayed with more contrast (f),
emphasizing the individual triangles of the triangulation. Adjacent triangles
are then filled with different colors and since the dual graph of the triangulation
is a tree, only two different colors are needed for a valid coloring. Two differ-
ent shades of the same color are used here. This has the effect that the same

CHAPTER 6. IMPLEMENTED VISUALIZATIONS 41

coloring can be used when combining this visualization with the one for parti-
tioning a polygon into monotone pieces (see Figure 6.6). Adjacent monotone

(a) Example from previous section (b) A bigger example

Figure 6.6: Triangulated monotone pieces

pieces are colored with contrasting colors while the triangles of the individual
triangulations use shades of the same color. Hence, the monotone pieces can
be spotted easily along with their triangulation: a single picture shows us the
result of both algorithms applied for an arbitrary simple polygon.

6.5 Shortest Paths in Polygons

This visualization is of an algorithm for finding the shortest path between two
points, s and t, within the interior of a polygon. The path must lie within the
polygon, i.e. it is not allowed to cross its boundary. Lee and Preparata [LP84]
have given an algorithm for computing this shortest path in O(n ⋅ logn) time.
When the triangulation of the polygon is given, the algorithm takes only O(n)
time.

The polygon is assumed to be simple and does not contain any holes. We
triangulate the polygon and locate the triangles ∆s and ∆t containing s and
t respectively. Next, we look at the dual graph of the triangulation and de-
termine a path within that graph from ∆s to ∆t. Since the polygon does not
contain any holes, the dual graph is a tree. Hence, the path is unique and
can be found in linear time. The corresponding triangles of this path consti-
tute the triangulation of another polygon called the sleeve. Figure 6.7 shows
a polygon (a) and the corresponding triangulation (b): s and t are marked
with a red and a green circle respectively. The dark gray triangles are part of
the sleeve while the light gray triangles belong only to the original polygon’s
triangulation.

An important property of the sleeve is that the dual graph of its triangu-
lation is a chain in which ∆s is the first node and ∆t is the last. The shortest
path from s to t starts within ∆s, goes through all triangles of the sleeve and
ends in ∆t. On its way, the path has to cross all diagonals of the sleeve’s

42 CHAPTER 6. IMPLEMENTED VISUALIZATIONS

(a) Input (b) Triangulation with sleeve

(c) Intermediate state (d) Computed path

Figure 6.7: Shortest path in a simple polygon

triangulation. The algorithm makes use of this observation and considers the
diagonals one after the other, thereby computing the shortest paths from s to
both of each diagonal’s endpoints. Thus, the main loop of the algorithm is
over the diagonals of the sleeve. Each diagonal splits the sleeve into two parts,
one of which contains all diagonals that have been considered already and the
other containing all remaining diagonals. In the visualization, the former part
is depicted in light green to emphasize the part of the sleeve that we are al-
ready done with: in (c) we see the visualization in an intermediate state and
(d) shows the algorithm when it is completed.

The shortest paths from s to a diagonal’s right and left endpoints are
displayed in red and blue respectively. Both paths are identical from s through
to a vertex called the apex. This common part is displayed in purple. The
diverging parts of the paths have the shape of a funnel. In each iteration, the
algorithm determines the shortest path to one of the next diagonal’s endpoints
by maintaining this special shape. To achieve this, the algorithm traverses
the vertices of the funnel and at each position, examines a candidate segment.
Such segments are displayed as dashed lines so that the user can observe the
construction of the funnel based on that of the previous iteration.

CHAPTER 6. IMPLEMENTED VISUALIZATIONS 43

6.6 Chan’s Algorithm for Computing the Convex Hull

Chan [Cha96] has developed an optimal, output-sensitive algorithm for com-
puting the convex hull of a set of points on the plane. It runs in O(n ⋅ logh)

time, where h is the number of vertices of the convex hull. It improves over
previous algorithms with the same time bounds by being relatively simple,
because it does not use complex data structures or frameworks.

1

2

3

4

(a) Input

1

2

3

4

(b) Some vertices computed

1

2

3

4

(c) Finding tangents

1

2

3

4

(d) Finished

Figure 6.8: Chan’s algorithm performing gift-wrapping with four small convex hulls

It is inspired by Jarvis’s march [Jar73] and uses the gift-wrapping technique
[CK70; Sha78]. The algorithm pre-processes the input by dividing the points
into groups of size m for which the convex hull will be precomputed with any
algorithm with running time O(n ⋅ logn). It then uses gift-wrapping to find the
global convex hull: we start with the leftmost of all points and find one vertex
of the hull after the other. In each step, we consider the tangents through the
last vertex of the convex hull that has been found to each of the precomputed
polygons. Of those tangents, we select the one that maximizes the interior
angle of the polygon corresponding to the emerging convex hull.

The problem is that m is not known in beforehand, so the algorithm tries
different values subsequently. When it finds that m is too small, it stops

44 CHAPTER 6. IMPLEMENTED VISUALIZATIONS

the computation and continues with the next larger value. Subsequent values
of m are chosen to increase super-exponentially to obtain the desired overall
asymptotic running time of the algorithm.

The visualization (see Figure 6.8) focuses on the gift-wrapping step that
the algorithm performs on a set of convex polygons. The input is thus not a
set of points, but actually a set of convex polygons instead (a). The partial
convex hull is drawn with green lines and its vertices are depicted with black
circles (b). In each wrapping step, the algorithm determines the tangents to
the polygons through the current hull vertex (c). In the implemented variant,
it does so by walking around each polygon in clockwise order, starting at the
tangent vertex of the previous iteration, until the tangent vertex is found.
Tangents are displayed in red; tangent nodes are depicted with black disks;
and the polygons for which the tangents have already been found are blue.
The tangent that we are currently looking for is magenta; the tangent node
that is currently being moved is highlighted with an additional, larger black
circle; and the respective polygon is light red. Once all tangents have been
found, the algorithm can determine the next vertex of the convex hull. In that
step, the small polygon that this vertex belongs to is depicted in light green
to emphasize this decision (b).

6.7 Fréchet Distance

The Fréchet distance is a metric for the resemblance of curves. The interesting
property of this metric is that it takes into account the shape of the curves.
This distinguishes it from other measures such as the Hausdorff distance where
the curves are considered as sets of points and their shape is disregarded.

Algorithms for computing the Fréchet distance for two given polygonal
curves make use of different types of diagrams. For two such diagrams visual-
izations have been implemented.

(a) Input
(b) Free space

Figure 6.9: The free space diagram

CHAPTER 6. IMPLEMENTED VISUALIZATIONS 45

(a) Free space markers (b) Reachable space

(c) Reachable space markers (d) All combined

Figure 6.10: Free space visualization components

6.7.1 Free Space Diagram

Alt and Godau [AG95] have given the initial algorithm for computing the
Fréchet distance for polygonal chains. Their algorithm uses the free space to
solve the decision problem for a given distance ε. By solving the decision prob-
lem for certain critical values, the actual Fréchet distance can be computed.
To visualize the free space, the free space diagram can be used. Figure 6.9
shows an example of such a diagram: for a fixed ε it displays a white area that
represents the parameter subspace of the curves where the distance between
the curves is ≤ ε. Each point in the diagram represents a position on both of
the input curves. When the diagram is white at such a point, it means that
the distance between the two corresponding points at the respective positions
on the curves is ≤ ε.

The diagram consists of cells that corresponds to pairs of segments from
both input curves. In this example, one chain has six segments, the other
four so the diagram has 6 × 4 cells. Within each cell the free space is the
intersection of the cell rectangle with an ellipse whose equation depends on the
corresponding line segments. The intersection of the free space with the four
sides of a cell are (possibly empty) intervals. Those intervals are important for
the algorithm and thus it is possible to show their endpoints in the diagram
as in Figure 6.10a.

For solving the decision problem, we compute the reachable space, a subset

46 CHAPTER 6. IMPLEMENTED VISUALIZATIONS

of the free space. Starting at the bottom left corner of the diagram, working our
way through it until we reach the top right corner, we compute the reachable
space using dynamic programming. The user can toggle the reachable space
visibility resulting in a picture like Figure 6.10b. The real algorithm only
deals with the intersections of the reachable space with the cell boundaries
rather than the reachable space as an area. As with the free space, those
intersections are line segments, which can also be shown in the diagram as is
Figure 6.10c. Enabling all components simultaneously will result in an image
like Figure 6.10d.

The user interface provides a slider for configuring ε so that one can inspect
the diagram for different parameters. This makes it easy to observe how free
space and reachable space evolve with a changing value for ε.

6.7.2 Distance Terrain

Buchin et al. [Buc+13] have developed another algorithm for computing the
Fréchet distance. It is different from the previous algorithm because it does not
repeatedly solve a decision problem for a finite set of critical values. Instead, it
computes the Fréchet distance directly by considering the distance terrain. The
distance terrain (see Figure 6.11) is a generalization of the free space diagram.

(a) Input
low

in
cr
ea
si
n
g
h
ei
gh

t

(b) Distance terrain

Figure 6.11: The distance terrain

As with the free space, each point on the terrain corresponds to positions on
the input chains. However, instead of encoding binary information, each point
represents the distance between the corresponding points on the curves. When
interpreted as a height, this gives a 3-dimensional terrain. The visualization
shows a 2-dimensional view of that terrain where the color encodes its elevation.

Their algorithm examines bimonotone paths from the bottom left to the
top right corner of the diagram. Across the possible paths to the boundaries of
the cells, they optimize a criterion of that path: its maximum height through
the terrain should be as low as possible.

The visualization of the distance terrain is static. To achieve a clear de-
piction of the elevation of the terrain it has been mapped to hue values on the
color wheel. An arbitrary distance interval maps to the complete color wheel

CHAPTER 6. IMPLEMENTED VISUALIZATIONS 47

resulting in periodic ambiguity of colors. Which value is useful for this map-
ping depends on the input and influences the overall appearance of the graphic.
Figure 6.12 shows the same distance terrain for three different mapping values.
To give the user control over this value, the user interface provides a slider that
adjusts it.

(a) 400 (b) 600 (c) 800

Figure 6.12: The distance terrain with different scale values

6.8 Buffer Regions

A common geometric operation in Geographic Information Systems (GIS) is
the computation of so-called buffer regions. Buffers are typically defined as the
Minkowski sum of some geometric features such as lines or polygons and a disk
centered at the origin [Kre06]. Their computation involves the computation of
offset curves [Hof89] which are derived from input curves by shifting them by
a given distance d. Each point p′ on an offset curve is derived from a point p
on the input curve by translating it by a vector with length d whose direction
is orthogonal to the direction of the input curve at point p.

JTS implements buffering that can be applied to points, lines and polygons
for a specified buffer distance d. The resulting curved shapes are approximated
with straight line segments with configurable accuracy. The JTS implemen-
tation applies the concept of end-caps and join-styles to buffers, which are
otherwise known from computer graphics in the context of drawing paths with
different kinds of stroke styles (see Figures 6.13 and 6.14 for the available end-
cap and join styles). The shape of the buffer then looks as if the outline of

(a) Flat (b) Round (c) Square

Figure 6.13: Cap styles

the input geometries had been drawn with the respective styles. Figure 6.15
shows some example buffers for the input (a). Using a round end-cap and a
round join style (b) yields the classical buffer corresponding to the Minkowski
sum with a disk, but the styles can be combined arbitrarily (c).

48 CHAPTER 6. IMPLEMENTED VISUALIZATIONS

(a) Bevel (b) Miter (c) Round

Figure 6.14: Join styles

Usually, the buffer distance is positive, but negative values can also be
supplied (d). Points and polygonal chains do not contribute to the output in
that case and polygons are shrunk by the respective distance.

Our visualization lets the user select end-cap and join styles through combo
boxes and the buffer distance can be adjusted using a slider.

(a) Input (b) Round end-caps and round join

(c) Square end-caps and bevel join (d) Negative distance with round join

Figure 6.15: Buffer regions

Conclusions and Future Work

7
7.1 Summary

Our main objective was to create a modern framework for visualizing algo-
rithms and data structures from computational geometry. The software that
has been developed accomplishes this goal: end users can explore data struc-
tures and the behavior of algorithms, and, through the rich export functional-
ity, they can use the output of visualizations for various purposes. With the
geometry editor, there is an experimenting environment for designing algorithm
input. Additionally, the program ships with a database that contains exam-
ples for each implemented algorithm. Developers benefit from the facilities that
the framework provides and it allows them to create new visualizations easily.
The framework’s flexible design makes it possible to reuse many components
to reduce the developer’s workload.

Our collection of implemented visualizations already provides partial cover-
age of the topics considered in introductory courses on computational geometry
plus some material on more specialized problems. Hence, it could be used as a
complementary tool to assist teaching such courses. Through its open source
nature, other developers could participate in the process of creating a thorough
collection of animations. This could be done by researchers themselves, but
the implementation of visualizations could also be a suitable topic for student’s
software projects.

7.2 Future Work

LiveCG’s main user interface is quite comprehensive, but it could still be im-
proved. For instance, the various visualization-dependent settings described
in Section 4.4 could be made accessible through appropriate generic user in-
terfaces. This would allow the user to change these settings conveniently at
runtime. Also, not having to edit configuration files by hand with a text editor
would increase usability.

Some functionality that one usually expects from desktop applications is
still missing. The geometry editor should support undo/redo facilities to let
the user revert misguided or accidental changes to the input. In this regard,

49

50 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

it would also be useful if the editor was aware of unsaved changes when the
current scene is about to be dismissed either by loading another scene or by
closing the program. Users should then be warned about potential data loss
and given a chance to save their work.

The visualization for partitioning polygons into monotone pieces (Sec-
tion 6.3) is currently only static. It should be animated to capture the dynamic
behaviour of the algorithm.

To increase coverage of topics, more visualizations should be implemented
or ported from existing applets. Obvious candidates are line segment inter-
section, trapezoidal maps, multiple algorithms for computing the convex hull,
computing the closest pair of a point set, visibility problems and robot motion
planning. Also, algorithms and data structures for geometric searching like R-
trees and Quadtrees could be nicely visualized. To reduce the effort, it would
be useful to get access to the source code of existing visualizations and port
them to the framework.

In the long run, it would be desirable to support more types of geometric
objects. For instance, for implementing visualizations on arrangements of lines,
we would need the ability to add infinite lines or rays to the scene. To support
more topics from computer graphics, different types of splines should be added.
Of course, 3-dimensional objects for input would allow many more algorithms
or generalizations of 2-dimensional variants to be implemented. However, sup-
porting them would be a rather big task, as the input and manipulation of such
objects require sophisticated user interfaces that do not have much in common
with their 2-dimensional counterparts.

Using the currently available back ends, a number of interesting output
formats could be implemented on top of them. For instance, combining the
PNG output module with the text output could be used for generating static
HTML websites that explain an algorithm in detail. In a similar fashion,
text output could be combined with Ipe images to produce explanatory LATEX
documents. On the other hand, combining sequences of images could also
be used for the creation of video files that would bundle the dynamics of an
algorithm’s execution into a single artifact.

Another interesting idea is to bring the visualizations to the web, not only
statically, but with support for user interaction. Therefore, a GWT-based
back end could be implemented. With appropriate user interfaces it should be
possible to build an experimenting environment similar to the Swing UI while
sharing a common codebase for the visualizations themselves.

References

[AG95] Helmut Alt and Michael Godau. „Computing the Fréchet distance
between two polygonal curves“. International Journal of Compu-
tational Geometry & Applications 5.01–02 (1995), pp. 75–91.

[Ame+95] Nina Amenta, Stuart Levy, Tamara Munzner, and Mark Phillips.
„Geomview: A System for Geometric Visualization“. In: Proceed-
ings of the 11th Annual ACM Symposium on Computational Ge-
ometry (SoCG). SCG ’95. Vancouver, British Columbia, Canada:
ACM, 1995, pp. 412–413.

[BCS96] Michael Dwyer Byrne, Richard Catrambone, and John T Stasko.
Do algorithm animations aid learning? Tech. rep. GIT-GVU-96-
18. Georgia Institute of Technology, Aug. 1996.

[Ber+00] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry. Springer, 2000.

[BMS94] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. „On de-
generacy in geometric computations“. In: Proceedings of the 5th
annual ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics. 1994, pp. 16–23.

[BN02] Matthias Bäsken and Stefan Näher. „GeoWin A Generic Tool for
Interactive Visualization of Geometric Algorithms“. In: Software
Visualization. Ed. by Stephan Diehl. Vol. 2269. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2002, pp. 88–100.

[BP98] Ronald Baecker and Blaine Price. „The early history of software
visualization“. Software Visualization (1998), pp. 29–34.

[BS81] Ronald M Baecker and David Sherman. Sorting Out Sorting.
16mm color sound film. Shown at SIGGRAPH. 1981.

[BS84] Marc H. Brown and Robert Sedgewick. „A System for Algorithm
Animation“. SIGGRAPH Computer Graphics 18.3 (July 1984),
pp. 177–186.

51

52 REFERENCES

[Buc+13] Kevin Buchin, Maike Buchin, Rolf van Leusden, Wouter Meule-
mans, and Wolfgang Mulzer. „Computing the Fréchet Distance
with a Retractable Leash“. In: Proceedings of the 21st Annual Eu-
ropean Symposium on Algorithms (ESA). Springer, 2013, pp. 241–
252.

[Cha96] Timothy M Chan. „Optimal output-sensitive convex hull algo-
rithms in two and three dimensions“. Discrete & Computational
Geometry 16.4 (1996), pp. 361–368.

[CK70] Donald R Chand and Sham S Kapur. „An algorithm for convex
polytopes“. Journal of the ACM (JACM) 17.1 (1970), pp. 78–86.

[Coo+14] Matthew L. Cooper, Clifford A. Shaffer, Stephen H. Edwards, and
Sean P. Ponce. „Open source software and the algorithm visual-
ization community“. Science of Computer Programming (2014).

[ELW98] Robert Eckstein, Marc Loy, and Dave Wood. Java Swing. O’Reilly
& Associates, Inc., 1998.

[Eps+94] P. Epstein, J. Kavanagh, A. Knight, J. May, T. Nguyen, and J.-
R. Sack. „A workbench for computational geometry“. Algorithmica
11.4 (1994), pp. 404–428.

[For87] Steven Fortune. „A sweepline algorithm for Voronoi diagrams“.
Algorithmica 2.1-4 (1987), pp. 153–174.

[Gar+78] Michael R Garey, David S Johnson, Franco P Preparata, and
Robert E Tarjan. „Triangulating a simple polygon“. Information
Processing Letters 7.4 (1978), pp. 175–179.

[GS88] Leonidas J Guibas and Jorge Stolfi. Ruler, Compass and Com-
puter: The Design and Analysis of Geometric Algorithms.
Springer, 1988.

[HD99] Alejo Hausner and David P Dobkin. In: Jörg-Rüdiger Sack and
Jorge Urrutia. Handbook of Computational Geometry. Elsevier,
1999. Chap. Making Geometry Visible: An Introduction to the
Animation of Geometric Algorithms.

[Hof89] Christoph M Hoffmann. Geometric and Solid Modeling. Morgan
Kaufmann, 1989.

[Jar73] Ray A Jarvis. „On the identification of the convex hull of a fi-
nite set of points in the plane“. Information Processing Letters 2.1
(1973), pp. 18–21.

[Jef98] Clinton L. Jeffrey. In: John Stasko, Marc Domingue, Marc H
Brown, and Blaine A Price. Software Visualization: Programming
as a Multimedia Experience. The MIT Press, 1998. Chap. A
Menagerie of Program Visaualization Techniques.

REFERENCES 53

[Kre06] Marc van Kreveld. „Computational geometry: Its objectives and
relation to GIS“. Nederlandse Commissie voor Geodesie (NCG)
(2006), pp. 1–8.

[KS13] Ville Karavirta and Clifford A. Shaffer. „JSAV: The JavaScript
Algorithm Visualization Library“. In: Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer Science
Education. ITiCSE ’13. Canterbury, England, UK: ACM, 2013,
pp. 159–164.

[LP84] D. T. Lee and F. P. Preparata. „Euclidean shortest paths in the
presence of rectilinear barriers“. Networks 14.3 (1984), pp. 393–
410.

[MP78] David E. Muller and Franco P. Preparata. „Finding the intersec-
tion of two convex polyhedra“. Theoretical Computer Science 7.2
(1978), pp. 217–236.

[PBS93] Blaine A Price, Ronald M Baecker, and Ian S Small. „A principled
taxonomy of software visualization“. Journal of Visual Languages
& Computing 4.3 (1993), pp. 211–266.

[PBS98] Blaine Price, Ronald Baecker, and Ian Small. In: John Stasko,
Marc Domingue, Marc H Brown, and Blaine A Price. Software
Visualization: Programming as a Multimedia Experience. The MIT
Press, 1998. Chap. An Introduction to Software Visualization.

[PS85] Franco P Preparata and Michael Ian Shamos. Computational Ge-
ometry: An Introduction. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, New York, 1985.

[RJ93] P. de Rezende and W. Jacometti. „Animation of Geometric Al-
gorithms Using GeoLab“. In: Proceedings of the 9th Annual ACM
Symposium on Computational Geometry (SoCG). SCG ’93. San
Diego, California, USA: ACM, 1993, pp. 401–402.

[SBL93] John Stasko, Albert Badre, and Clayton Lewis. „Do Algorithm
Animations Assist Learning? An Empirical Study and Analysis“.
In: Proceedings of the INTERACT ’93 and CHI ’93 Conference on
Human Factors in Computing Systems. CHI ’93. Amsterdam, The
Netherlands: ACM, 1993, pp. 61–66.

[Sch90] Peter Schorn. „An object-oriented workbench for experimental ge-
ometric computation“. In: Proceedings of the 2nd Canadian Con-
ference on Computational Geometry (CCCG). 1990, pp. 172–175.

54 REFERENCES

[Sch95] Otfried Schwarzkopf. „The Extensible Drawing Editor Ipe“. In:
Proceedings of the 11th Annual ACM Symposium on Computa-
tional Geometry (SoCG). SCG ’95. Vancouver, British Columbia,
Canada: ACM, 1995, pp. 410–411.

[Sei88] Raimund Seidel. Constrained Delaunay triangulations and Voronoi
diagrams with obstacles. Tech. rep. 260. IIG, TU Graz, June 1988,
pp. 178–191.

[Sha+10] Clifford A. Shaffer, Matthew L. Cooper, Alexander Joel D. Alon,
Monika Akbar, Michael Stewart, Sean Ponce, and Stephen H. Ed-
wards. „Algorithm Visualization: The State of the Field“. ACM
Transactions on Computing Education 10 (Aug. 2010), pp. 1–22.

[Sha+11] Clifford A. Shaffer, Monika Akbar, Alexander Joel D. Alon,
Michael Stewart, and Stephen H. Edwards. „Getting Algorithm
Visualizations into the Classroom“. In: Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education.
SIGCSE ’11. Dallas, TX, USA: ACM, 2011, pp. 129–134.

[Sha78] Michael Ian Shamos. „Computational geometry.“ PhD thesis. Yale
University, 1978.

[SL98] John Stasko and Andrea Lawrence. In: John Stasko, Marc
Domingue, Marc H Brown, and Blaine A Price. Software Visu-
alization: Programming as a Multimedia Experience. The MIT
Press, 1998. Chap. Empirically Assessing Algorithm Animations
as Learning Aids.

[Sta+98] John Stasko, Marc Domingue, Marc H Brown, and Blaine A Price.
Software Visualization: Programming as a Multimedia Experience.
The MIT Press, 1998.

[TD95] Ayellet Tal and David Dobkin. „Visualization of geometric al-
gorithms“. IEEE Transactions on Visualization and Computer
Graphics 1.2 (1995), pp. 194–204.

Acronyms

API Application programming interface

AWT Abstract Window Toolkit

BALSA Brown Algorithm Simulator and Animator

BMP Bitmap image file

CAD Computer aided design

CAE Computer aided engineering

CAM Computer aided manufacturing

CG Computational geometry

CGAL Computational Geometry Algorithms Library

CLI Command-line interface

DCEL Doubly-connected edge list

DOM Document Object Model

DTD Document type definition

DVI Device independent file format

EPS Event point schedule

GIF Graphics interchange format

GIS Geographic information system

GPL General Public License

GUI Graphical user interface

GWT Google Web Toolkit

HTML HyperText Markup Language

JPEG Joint Photographic Experts Group

55

56 ACRONYMS

JTS JTS Topology Suite

JVM Java Virtual Machine

LiveCG Live Interactive Visualization Environment for Computational
Geometry

MVC Model-view-controller

PDF Portable Document Format

PGF Portable Graphics Format

PNG Portable Network Graphics

PS PostScript

SLS Sweep line status

SVG Scalable Vector Graphics

UI User interface

URL Uniform resource locator

WKT Well-known text

XML Extensible Markup Language

Source Code

A
A.1 Painter Interface

Manipulating the Drawing Appearance� �
public void setColor(Color color);

public void setStrokeWidth(double width);

public void setStrokeNormal ();

public void setStrokeDash(float[] dash , float phase);� �
Drawing Primitive Objects� �
public void drawRect(int x, int y, int width , int height);

public void drawRect(double x, double y,
double width , double height);

public void fillRect(int x, int y, int width , int height);

public void fillRect(double x, double y,
double width , double height);

public void drawLine(int x1, int y1, int x2 , int y2);

public void drawLine(double x1 , double y1,
double x2, double y2);

public void drawCircle(double x, double y, double radius);

public void fillCircle(double x, double y, double radius);� �

57

58 APPENDIX A. SOURCE CODE

Drawing Polygonal Chains� �
public void drawPath(List <Coordinate > points ,

boolean close);� �
Drawing Geometric Objects� �
public void drawChain(Chain chain);

public void drawPolygon(Polygon polygon);

public void fillPolygon(Polygon polygon);� �
Drawing AWT Shapes� �
public void draw(Shape shape);

public void fill(Shape shape);� �
Drawing Text� �
public void drawString(String text , double x, double y);� �
Manipulating the Clip� �
public Object getClip ();

public void setClip(Object clip);

public void clipRect(double x, double y,
double width , double height);

public void clipArea(Shape shape);� �
Applying Transforms� �
public AffineTransform getTransform ();

public void setTransform(AffineTransform t);� �
Drawing Raster Images� �
public void drawImage(BufferedImage image , int x, int y);� �

	1 Introduction
	1.1 Structure of the Document
	1.2 Objectives and Contribution

	2 Background
	2.1 Computational Geometry
	2.1.1 The Sweep Line Technique
	2.1.2 The Doubly-Connected Edge List (DCEL)
	2.1.3 General Position

	2.2 Algorithm Visualization
	2.2.1 History
	2.2.2 User Roles in Visualization Systems
	2.2.3 Overview of Available Visualization Systems
	2.2.4 Other Visualization Material

	3 LiveCG
	3.1 Relevant Software and Technology
	3.2 Project Details
	3.3 Data Model
	3.4 File Format

	4 User Perspective
	4.1 Main Graphical User Interface (GUI)
	4.2 Example: a Visualization Dialog
	4.3 Command-Line Interface (CLI)
	4.4 Advanced Configuration

	5 Developer Perspective
	5.1 Implementing Visualizations
	5.2 Rendering Subsystem
	5.2.1 Drawing Layer
	5.2.2 Drawing Back Ends

	5.3 Text Output Module

	6 Implemented Visualizations
	6.1 Doubly-Connected Edge List (DCEL)
	6.2 Fortune's Sweep Line Algorithm for Computing Voronoi Diagrams
	6.3 Partitioning Polygons into Monotone Pieces
	6.4 Triangulating Monotone Polygons
	6.5 Shortest Paths in Polygons
	6.6 Chan's Algorithm for Computing the Convex Hull
	6.7 Fréchet Distance
	6.7.1 Free Space Diagram
	6.7.2 Distance Terrain

	6.8 Buffer Regions

	7 Conclusions and Future Work
	7.1 Summary
	7.2 Future Work

	References
	Acronyms
	A Source Code
	A.1 Painter Interface

